?({{ VETENSKA;@ KUNGL

\ ocH {3 TEKNISKA
\% KONST (55
\\%X % HOGSKOLAN

Department of Speech, Music and Hearing

Analysis and Simulation of Ensemble Sounds
M.Sc. thesis

Daniel Kahlin

24th March 2000

Examensarbete for civilingenjorsexamen
Institutionen for tal, musik och horsel
Handledare Sten Ternstrém
Examinator Johan Sundberg

Written by Daniel Kahlin.
Copyright (© 1998,1999,2000 Daniel Kahlin <daniel@kahlin.net >
$Id: report.tex,v 1.74 2000/03/24 15:11:56 tlr Exp $

Abstract

Analysis and Simulation of Ensemble Sounds

The so-called “chorus” or “ensemble” effect is interesting both musically and
perceptually. It is usually imitated in effect devices using slowly varying time
shifts, giving the impression of rotating speakers rather than that of an en-
semble. Dolson found in 1983 that the quasi-random amplitude modulation of
beating partials alone can cue the perception of ensemble. The small changes in
frequency, he found, are less salient perceptually. This suggests an alternative
simulation of the chorus effect.

Attempts were made to corroborate Dolson’s finding, and to simulate ensem-
bles in the frequency domain by modulating only partial tone amplitudes, using
three approaches: filter banks, real-valued FFT:s and complex-valued FFT:s.
The exact partial envelopes of a choral sound were found to be elusive, partly
because the sidebands of one partial will overlap its neighbours at higher fre-
quencies. The methods used are described, and the outcome of the trials is
discussed.

Sammanfattning

Analys och Simulering av Ensembleljud

Den sa kallade "korus” eller “ensemble” effekten &r intressant bade musikaliskt
och perceptionsméssigt. I effektenheter imiteras den vanligen med hjilp av
langsamt férindrade tidférdrojningar, vilket snarare ger intrycket av roterande
hogtalare, dn av en ensemble. Dolson upptéckte 1983 att den kvasislumpméssi-
ga amplitudmodulationen som uppstar nir deltoner svivar mot varandra i sig
racker for att skapa en kinsla av ensemble. Han fann att de sma féréndringarna
i frekvens dr mindre tydliga perceptionsméssigt. Detta ger ett uppslag till en
alternativ simulering av korus-effekten.

Forsok gjordes att bekrifta Dolsons upptéckt, och att simulera ensembler
i frekvensdoménen genom att endast modulera deltonernas amplituder. Detta
gjordes pa tre satt: filterbanker, reellvirda FFT:er och komplexviarda FFT:er.
Deltonernas exakta amplitudenveloper i ett korljud visade sig vara komplicerade,
delvis pa grund av att sidbanden kring en delton kommer att &verlappa sina
grannar vid hoga frekvenser. De anviinda metoderna beskrivs, och resultaten av
forsoken diskuteras.

A concise version of this report, with an extended version of the filter-bank
model, was presented at Euromicro 99 in Milano, Italy, Sept 8-10 1999.[8]

Contents

1 Introduction 1
1.1 Introduction 1
1.2 Farlierwork 1
1.3 Ensemblesounds 3
2 Methods and Results 4
2.1 Approaches 4
2.2 Filterbank 4
2.2.1 Analysis using filter banko 000 4
2.2.2 Modulation using data from a filter bank 5
2.2.3 Results using filter banko 00000 6
2.3 Using the Fourier transform 6
2.3.1 Theory for using FFT 9
2.3.2 Keeping what is important 9
2.3.3 Overlapping FFT and IFFT 10
2.4 Real-valued FFT oo 10
2.4.1 Analysis using real-valued FFT 10
2.4.2 Resynthesis/modulation using data from real-valued FFT 11
2.4.3 Results using real-valued FFT 11
2.5 Complex-valued FFT 12
2.5.1 Analysis using complex-valued FFT 12

2.5.2 Resynthesis/modulation using data from complex-valued
FET . . . e 13
2.5.3 Results using complex-valued FFT 13
2.5.4 Cross-synthesis L. 14
2.6 Modelling 14
2.6.1 Simple noise model 14
2.6.2 Modelling the amplitude modulation functions 14
3 Discussion 16
4 Summary 17
A Sound data 19
A.1 Ensemble material 19
A2 Solomaterial oL oo 19

ii

CONTENTS

B Matlab source code
Bl pvtest.m
B.2 specan.m e
B.3 respect.mo

C Acknowledgements

iii

21
21
22
24

27

List of Figures

1.1 Conventional chorus
2.1 Typical filter bank o o Lo
2.2 Filter bank model
2.3 Input voice
2.4 Filter bank ensemble oL
25 Realensemble.
26 Testtones
2.7 Real-valued FFT ensemble

iv

List of Tables

A.1 Ensemblesound files
A2 Solosound files

Chapter 1

Introduction

1.1 Introduction

Why would we want a new method for making ensemble sounds? A device that
could simulate the sound of an ensemble from one single voice would be of inter-
est to many musicians and recording studios. A common technique for achiev-
ing ensemble sound is to record multiple versions of the same sound on parallel
tracks and then mix them together, so-called overdubbing. This is however time
consuming, and requires a “live” sound source to begin with. Repeatedly adding
the same sequenced synthesizer track will only produce increased loudness and
maybe some comb filter effects. Adding multiple takes of a guitarist or singer
together works well, apparently because of inevitable small differences between
takes.

A standard device for simulating an ensemble is the so-called chorus effect,
which with small variations can be found in most commercial synthesizers and
effect processors. The conventional chorus device takes a somewhat heuristic
approach, in which three versions of the input signal are subjected to varying
delays and then summed together. This chorus effect is popular in pop and rock
music, but it does not sound quite like a choir. It is a rather basic approximation
of what happens when three voices sound together. This algorithm uses only
time delays which are easy to implement, but perhaps too simple for obtaining
a realistic ensemble sound.

The purpose of the present work was to investigate whether an algorithm can
be devised that can transform one voice into a large ensemble of voices, such as
a choir or a string section. Ideally, the algorithm should also be implementable
in a real time device.

1.2 Earlier work

Descriptions of practical implementations of the so called chorus effect are
mostly found in patent applications, e.g., Adachi [2], Cotton [3]. Typically
three versions of the input signal with are summed together with different time
varying delays. The delays are varied in time according to a function which
mostly seems to be arrived at by trial and error. A common modulation signal
consists of a low frequency sinewave of about 0.7-0.8 Hz with a smaller ampli-

CHAPTER 1. INTRODUCTION 2

O dgr LFO
Delay

120 dgr =
Delay @

240 dgr —
Delay

Figure 1.1: Principle of the conventional chorus effect

tude sinewave of 8-10 times that frequency superimposed. This signal is then
phase shifted to obtain three different signals, 0, 120 and 240 degrees. “see fig-
ure 1.1 on page 2.” The delay time varies between about 10 to 40 ms. It is
important that the higher frequency modulation component affect delay time
equally during the period of the lower frequency component, i.e. the relation-
ship between the modulation signal and the delay time must be linear. This
becomes an issue mostly in analog implementations. The result is a sense of
ensemble, especially if this is applied in stereo with slightly different parameters
for the left and right channels.

Dolson [1] made experiments on solo and ensemble violin sounds. He reports
that violin sounds are in fact entirely harmonic, except for the attack portion.
He found that the sustain portion alone is sufficient for obtaining ensemble
sensation. He also found that at least 4-8 partials are necessary for achieving
ensemble sensation. He verified that if the frequency variation of the harmonic
is Ay, then the frequency variation of the n:th harmonic is nAy, as expected.
The brain appears to recognize this pattern; Dolson states that beats in the low
end of the spectrum must be slow, while beats in the high end of the spectrum
must be rapid for the ear to accept the sound as coming from an ensemble.
In fact Dolson found that such amplitude modulations appear to be sufficient.
He also tried simulating using only frequency modulation, which gave a weaker
sense of ensemble.

These findings suggest that it might be possible to simulate an ensemble
using some frequency domain transform to manipulate only the amplitudes of
frequency bands or the individual partials. This would have the advantage of
not requiring frequency variations in the source signal, when synthesizing an
ensemble.

Thus, in these experiments we wished to explore whether ensemble effects
might be obtained by modulating signals in the frequency domain rather than in

CHAPTER 1. INTRODUCTION 3

the time domain. An additional constraint is that the chosen algorithms should
theoretically be implementable in a real time device, i.e no long latencies may
be present.

1.3 Ensemble sounds

The type of ensemble sounds addressed in this report is represented by a group of
male singers singing the same vowel in unison, that is at approximately the same
pitch. Typically the amplitude envelope of such an ensemble sound has little
modulation, whereas each partial by itself has practically 100% modulation. For
our purposes we will assume that the singers of an ensemble are independent.
By this we mean that if the singers were recorded one at a time, the sum of these
recordings would still sound like the same ensemble, at least for sustained tones.
It could be argued that a good ensemble sound requires singer interaction, in
other words, that the singers are not independent. This may, or may not be the
case, but the assumption will hopefully be sufficient for our task.

Chapter 2

Methods and Results

2.1 Approaches

Three different methods of frequency domain analysis and modulation were
tried, with progressively higher demands for precision and information content.

o filter bank - accounting only for amplitudes within third octave bands
e real-valued FFT - accounting only for the amplitude of each partial

e complex-valued FFT - accounting for both the amplitude and phase of
each partial

2.2 Filter bank

In a live ensemble sound, there will be random beating on each partial. Given
the well-known critical-band model of the auditory system, however, it may be
that the resulting amplitude modulations need only be simulated per critical
band. Hence we first tried a filter bank approach (also often called a band
vocoder). This has the advantage of being conceptually straightforward, and
easy to implement without problematic delays in the processing.

2.2.1 Analysis using filter bank

The analysis works by dividing an ensemble sound into a number of frequency
bands and the amplitude within each band is recorded separately. (as in the
analysis section of a band vocoder) “see figure 2.1 on page 5.” The recorded
amplitude envelopes can then be used for modulating a solo sound at a later
time. Ideally the filter bands should resemble bark filters, with an asymmetric
frequency response that is steeper toward low frequencies than toward high fre-
quencies. As an approximation a bank of third octave filters, with the lowest
bandpass filter modified to be a lowpass filter, can be used. A bark scale fil-
ter bank might perform slightly better, but third octave filter banks are more
readily available. A potential problem with this approach is that since the filter
bank has logarithmic spacing between the bands, at higher frequencies several
harmonics will fall into one band. The measured amplitude within that band

CHAPTER 2. METHODS AND RESULTS 5

log |A|

log f

Figure 2.1: Typical filter bank

will then correspond to the amplitude of the sum of those harmonics. If for
example two harmonics with 100% modulation are summed together, the sum
will have much less than 100% modulation, provided that the modulations are
uncorrelated. The amplitude detection method is important. It consists of a
rectifier and a lowpass filter in series. If the filter cutoff frequency is set too low,
only very slow modulations can be detected. If it is set too high, the signal will
“leak” through.

Several things limit the information we can extract using this analysis; how-
ever, what remains may or may not be sufficient to produce perceptually ad-
equate results. According to the critical band theory this should work, but
problems may arise if the amplitude of the individual partials changes very
rapidly.

2.2.2 Modulation using data from a filter bank

The modulation works in a similar way to the analysis. A solo sound is also
divided into a number of frequency bands using a filter bank. The filter bank
is exactly like the one used for analysis, but with added gain elements, one for
each band, which then sum into one output. The gain of each band in the
bank is modulated by the recorded amplitude envelope from the analysis. For
this to work we must compensate for the fact that different source sounds have
different characteristic spectrum envelopes. In applying the amplitude envelopes
of individual frequency bands we must normalize the data, so that each band
will have a gain of unity. If not, the resulting sound will be coloured by the
spectrum envelope of the analysed ensemble sound. A potential problem is
that if there is very little difference between the highest and lowest amplitude
value within a specific amplitude envelope, then the quantisation noise will be
significant when that envelope is normalized. The solo sound should have a
pitch fairly close to that of the analyzed ensemble sound. If the pitches differ
too much, the modulation will be more rapid or slower than intended, because
the fundamental might move into another band.

CHAPTER 2. METHODS AND RESULTS 6

2.2.3 Results using filter bank

The filter bank approach was tested in practice using an Aladdin' model. “see
figure 2.2 on page 7.” The filters used were derived from a twelve band third-
octave telecom model, modified such that the lowest band was lowpass rather
than bandpass. The cutoff frequency of the lowest filter was 500 Hz, and the
cutoff frequency of the highest bandpass filter was 6400 Hz. The amplitude
envelopes sampled from the twelve filters was stored to disk, and later normal-
ized manually using a signal editor. The amplitude envelopes were then applied
to a singing voice, first monaurally. The result does have an ensemble quality,
but it is still quite obvious that one is listening to a single voice. Secondly, a
stereo test with “independent” modulation in the left and right channels was
conducted. The amplitude data was manually time shifted using a signal edi-
tor, and applied to the right channel, whilst the non shifted version was applied
to the left channel. This improves the impression of ensemble, but the sound
of a single voice still remains, especially when comparing the sound to a real
choir. Perhaps this could be improved somewhat by adding more bands in the
low frequency range, but our impression is that the lack of realism using this
filter bank approach is not connected with the low frequencies. Rather there
seemed to be a lack of small pitch deviations. This was confirmed visually. “see
figure 2.3, 2.4 and 2.5” These limitations of the filter bank approach prompted
us to explore more detailed techniques, based on FFT analysis and resynthesis.

2.3 Using the Fourier transform

The Fourier Transform works like a filter bank, in which the spacing between the
bands is linear. The magnitude and phase within each band can be obtained
from the real and imaginary parts produced by the algorithm. For studying
the envelopes of the individual partials with a minimum of computation, it
would be convenient to obtain a compact spectral representation with exactly
one data point per partial. This would work like a filter bank with one band
aligned to each partial. The most straightforward method is to use the Discrete
Fourier Transform (DFT) with a window size of exactly two periods of the
source signal. Since the DFT is very slow, we would like instead to use the
Fast Fourier Transform (FFT). A property of the FFT is that it must have a
window size of 2". Since we cannot align the FFT window size, we instead align
the input data to the FFT. This can be done by resampling the input signal
such that two periods fit exactly into one FFT window. This also minimizes
the problem that arises if the length of a period of the source sound is not an
integer number of samples. The DFT method will in that case have to round the
length to an integer of samples, whilst the FFT method of resampling the data
will distribute the error evenly across all periods. In practice an approximated
resampling will be used, because of the amount computation otherwise needed.
Both these methods assume that the source sound is harmonic, which is true in
the case of solo string or voices.

The actual FFT / inverse FFT algoritm is beyond the scope of the report,
but a tutorial can be found in Jaffe [6] and [7].

L Aladdin Interactive DSP by AB Nyvalla DSP

CHAPTER 2. METHODS AND RESULTS

<. Aladdin - [C:\ARTIKLARADANIELABANKMOD _ALD]

File Edit Inteffaces Bun “Window Tool: Help NEIES
Solo Bandpass Multiband ﬂ
source filters 143 oct MOdulation P 180 Hz

" O = B
bl ERR sEOY

B BRSO

It RN O

7 i\ O

-3 E O

It R RV O

B O

B e O

o O
=5

autput band @@1 B RO —

summation

-------- TO000D0oRRe
......... Tl o, output e witn

ensemble simulation

|
2 I
B Halt 16000Hz |(dle) binop1d

Figure 2.2: Aladdin filter bank model

CHAPTER 2. METHODS AND RESULTS

FFT paints: 761/1024 Bandwidth 42 Hz Hanning window of 47 ms Gain 54 dB Hi-shape

Figure 2.3: Spectrum of input voice

FFT paints: 761/1024 Bandwidth 42 Hz Hanning window of 47 ms Gain 48 dB Hi-shape

Figure 2.4: Spectrum of filter bank ensemble

CHAPTER 2. METHODS AND RESULTS 9

FFT paints: 761/1024 Bandwidth 42 Hz Hanning window of 47 ms Gain 54 dB Hi-shape

Figure 2.5: Spectrum of real ensemble

2.3.1 Theory for using FFT

The idea is to split the data into n data streams of bandwidth fy, where n is
the number of partials in the sound. The data is analyzed by first resampling
it so that two periods of the fundamental fit perfectly into the FFT size (N).
Then the data is Fourier transformed using the well known FFT algorithm.
The spacing between the elements in the FFT vector should now be fo, i.e., one
harmonic for each element. The first element is the DC component, and the rest
are: fundamental, partial 2, partial 3, and so on. The maximal bandwidth of the
amplitude data may be equal to fo on both sides. In other words, the amplitude
of a given partial must not change too quickly. In the frequency domain this
would have the consequence that the sideband from one partial will overlap the
next band. The sample rate of the amplitude envelope will have to be at least
2 fo. This is no problem for the first few harmonics, but because of the increasing
modulation it may become an issue for the higher harmonics. At what frequency
might sideband leakage become a problem? This would depend on a number of
factors including: frequency scattering in the original signal, the fundamental
(fo) and the windowing function employed for the Fourier Transform. A rough
estimate shows that this may inflict problems around partial 50-100, perhaps
even lower. This limitation must be kept in mind when evaluating the result of
the analysis, possibly discarding the highest partials.

2.3.2 Keeping what is important

If we compute an FFT of a signal s, and want to be able to resynthesize it we
need to save the spectral data. If the number of points in the FFT are N and
Sj0,N—1] is real, then only the first N/2 4+ 1 complex points need to be kept.

pn = FFT(sp, N)
if s,€¢R for 0<n<N then py_,=p] for N/2<n<N

CHAPTER 2. METHODS AND RESULTS 10

original data

Frequency
N
o
o
o

0 1 2 3 4 5
Time

synthesized data

Frequency

Time

Figure 2.6: Test tones analyzed and resynthesized; the first 5 test tones are in
phase, and the next 5 have different phase.

2.3.3 Overlapping FFT and IFFT

To obtain a time series of the amplitude values of each harmonic, we slide the
FFT window along the input data in overlapping steps. As windowing function
we use the square root of a hamming window. The overlapping must be N/2
because of the windowing.

When resynthesizing the data an inverse FFT (or IFFT) algorithm is used.
After inverse transforming we window the data once more with the square root
of a hamming window. The total window function is then equal to a regular
hamming window, and if the data is put together using the same overlapping
(N/2) as before, the result will be the original input data. “see figure 2.6 on
page 10.” Some experiments with a regular hamming window applied both
during FFT and IFFT and the overlapping set to N/4, seem to provide a better
result. The choice of windowing function and overlapping is non-trivial, and
there may be better combinations than those above.

2.4 Real-valued FFT

2.4.1 Analysis using real-valued FFT

The real-valued FFT appoach is better than the filter bank in that it does not
try to approximate the amplitude envelopes. Recall that with the filter bank,
several partials may fall within one band. Analysis using a real-valued FFT is
similar to the filter bank approach in that it uses only amplitude information.

CHAPTER 2. METHODS AND RESULTS 11

The major difference is that the FFT works like a linear filter bank. Properly
aligned, one amplitude value per harmonic of the input sound is obtained. “see
section 2.3.1 on page 9.” If this is applied using a sliding window, one amplitude
envelope per harmonic is obtained. A drawback is that more data is generated,
and the problem of detecting rapid amplitude variations (as with the filter bank)
remains.

2.4.2 Resynthesis/modulation using data from real-valued
FFT

To resynthesize the data we apply the envelope of each analyzed partial to a
sinusoid of the corresponding frequency. The purpose of the resynthesis is to
verify that we have not lost too much information in the process.

To modulate using the data we apply the amplitude envelopes of the analyzed
signal to a different source solo signal.

2.4.3 Results using real-valued FFT

The real-valued FFT approach was tested using the sndan? package for Unix
systems. As test data, binaural recordings on analog tape of a male choir singing
unison vowels were used. These recordings were sampled in stereo at 32 kHz,
and the longest sustained vowels (about six seconds) were selected for analysis.
“see table A.1 on page 20.” The program pvan analyzes data by resampling it
and then computing FFT in overlapping windows. In order to make the har-
monics fit the bands of the FFT, the average fundamental frequency fo had
to be determined, which we did using the sndan tools mgan and fcheck. The
drift in mean fy was assumed to be zero over the six seconds. Each partial’s
amplitude envelope was tracked using the program pvan (which also tracks the
frequencies of the partials; not used here).
The result of the analysis process was an array of amplitude vectors, one for
each partial. The vectors contained one amplitude value per overlapping FFT
window. This data was then read into Matlab and used to modulate a har-
monic series of sinusoids with an amplitude of one. This procedure amounts to
resynthesis of the original data, but with all phase information discarded. Fur-
thermore, the amplitude modulations obtained in the analysis are fairly slow,
due to the rectify-and-smooth detection principle. A consequence of these two
limitations is that small frequency variations in the original are lost, resulting
in a sound with reasonable amplitude modulations but with a perfectly static
pitch. This result was deemed unsatisfactory and prompted us to continue with
the complex-valued FFT.

In the first trial using real-valued FFT, the amplitude variations of the first
20 partials were applied to sine waves with frequencies at integer multiples of the
measured fo. In principle this should give a reconstruction of the original sound
with only the phase information missing. Unfortunately we were restricted to
an 8kHz sampling rate because of memory considerations. When comparing the
result to the original signal lowpassed at 4kHz, they seem similar, but clearly a
larger bandwidth was needed.

2sndan by James Beauchamp

CHAPTER 2. METHODS AND RESULTS 12

FFT paints: 955/1024 Bandwidth 67 Hz Hanning window of 14 ms Gain 48 4B Hi-shape

) =
003kHz, 1.478s 11

Figure 2.7: Spectrum of real-valued FFT resynthesized ensemble (left), and
original ensemble (right).

For the second trial, more memory had been installed so that all partials
within the range of the sample rate could be used. This made it apparent that
the result has a static pitch, which is undesireable.

In the third trial, a simple test of cross applying data was made, by extracting
the vowel spectrum of one unison choir and then applying it to a time-varying
version. The motive for this test was to hear what happened when changing
the relative long time average amplitudes of the individual partials. This might
show if the partials were dependent of each other. The result is an acceptable
ensemble, but it shows the same defects as the result of the previous trial.

An additional test was performed by applying the data extracted during
analysis in stereo. Left channel data was correctly applied, while the right
channel data was applied backwards. The idea is to create an “independent”
modulation for each channel. This works fairly well to create a false stereo
effect.

2.5 Complex-valued FFT

2.5.1 Analysis using complex-valued FFT

When analyzing using the real-valued FFT, we discarded the phase information
of the signal. This is not a problem when the amplitude of the studied partial
is constant or changes only slowly, but when the amplitude modulation of a
partial becomes “fast”, the difference between amplitude and frequency modu-
lation becomes smaller. One consequence of disregarding the phase information
is that the spreading of the signal around each FFT band centre always will

CHAPTER 2. METHODS AND RESULTS 13

be symmetric®. If we use the complex-valued amplitude instead, from which

we can obtain both magnitude and phase, we can resynthesize the data with
an asymmetric spreading. The exact reason for this is beyond the scope of
this report. Apart from the preservation of complex-valued amplitude data, the
complex-valued FFT method is no different from the real-valued FFT method.

2.5.2 Resynthesis/modulation using data from complex-
valued FFT

The resynthesis and modulation using data from complex-valued FFT is similar
to using data from a real-valued FFT, except in that it uses complex-valued
modulation data instead of real.

2.5.3 Results using complex-valued FFT

The data is analyzed using the program specan.m. It takes a sound file, resam-
ples it so that two periods will fit into one FFT of a convenient length. Then
it records the FFT in overlapping windows. This is very similar to how pvan
works, but here we also record the phase. We also need to know the fundamen-
tal frequency of each sound file. The spectral data is then resynthesized using
respect.m. The selection of windowing function and overlapping is apparently
non-trivial. The first attempts were made using a Hamming window, and an
overlap of N/4, but that did not work well if the spectral data was modified too
much. Later we switched to using the square-root of a Hamming window when
FFT:ing, the same after IFFT:ing, and using an overlap of N/2. It is difficult
to tell which selection was better.

The first trial consisted of analyzing several ensemble sound files, resynthe-
sizing, and comparing the result to the original sound. This is similar to the
first and second trial using the real-valued FFT method. The result is hardly
distinguishable from the original. This shows us that the complex-valued FFT
method is a nearly loss less method of converting a sound into the frequency do-
main, and back. However it does not tell if the frequency domain representation
is correct. What happens if we modify the spectral data, and then resynthesize?

The second trial was an attempt to apply the time varying amplitude en-
velopes from a choir to that of a single singing voice. The time varying spectrum
of flackl.wav was applied to sundbl.wav. They have approximatly the same
fo, which should minimize artifacts due to shifting of the spectrum. When we
combined the average spectrum envelope of sundbl.wav with flackl.wav the
result sounded alot like a choir of sundbl.wav, but when the amplitude en-
velopes were multiplied together, i.e accounting for the time variations in both
sounds, the result was somewhat disappointing. It sounded like an ensemble,
but with the character of a ring modulation effect superimposed. We assume
this was due to problems with the windowing during resynthesis.

3Hint: think of the FFT as a heterodyne radio receiver, where the signal is mixed down
with the band centre frequency and thereby is transposed down in frequency such that zero
Hz becomes the new band centre.

CHAPTER 2. METHODS AND RESULTS 14

2.5.4 Cross-synthesis

By cross-synthesis we mean taking the normalized (complex-valued) amplitude
envelopes from an ensemble sound and applying them to a solo sound. The en-
semble sound was analyzed using the Matlab program specan.m. This program
resamples the signal and computes a complex-valued FFT, as described above.
For each partial, the data was then normalized to the maximum magnitude to
extract only the modulations, and discard the static spectrum envelope. This
requires an ensemble spectrum that is as flat as possible, for example using the
vowel [a:], or there will be too little information in the upper part of the spec-
trum.

A solo sound was then transformed to the frequency domain similarly to the
ensemble sound, but without normalization. The normalized spectral data from
the ensemble sound was then multiplied with the spectral data from the solo
sound, in the complex domain. This procedure is often called “quadrature mod-
ulation”. The effect of this operation is that the spectral spreading of each of the
partials in the ensemble sound will be shifted to the instantaneous frequency of
the corresponding partial in the solo sound.

The result of the quadrature modulation was then transformed back to the time
domain, with the complementary Matlab program respect.m. A typical result
gives an acceptable ensemble effect except for the tone attack and decay, which
by design are outside the scope of this model. There is some “frizzle” at high
frequencies; we believe this is due to quantization noise that becomes enlarged
when normalizing the amplitudes of very weak partials in the ensemble sound.
When the topmost octave was filtered out, this distortion was greatly reduced.

2.6 Modelling

The purpose of modelling is to design a function of the (complex-valued) ampli-
tude variation of each partial that is similar to the natural variations in ensemble
sounds. Ideally there should be a parameter controlling the degree of ensemble
sensation to apply to the input solo sound.

2.6.1 Simple noise model

The first test on synthesis using a model is based on just amplitude modulating
each partial with lowpass-filtered noise. The bandwidth was proportional to the
frequency of each partial. This results in a sound that sounds typically noisy,
and not at all like an ensemble. This suggests that lowpass-filtered noise may
not be adequate as model. This also suggests that the amplitude variations
might not be just uncorrelated noise as was assumed earlier.

2.6.2 Modelling the amplitude modulation functions

This part of the analysis consists of determining the probability function for
each harmonic. Hopefully we should see a trend in this, such that we can make
a probability model. One could guess that fy does not matter so much. However
several problems are present. One is the fact that we have source sound samples
of vowels, so the frequency response is coloured. We thus have to normalize
the data, to rule out the effect of this. This operation raises the noise floor

CHAPTER 2. METHODS AND RESULTS 15

significantly (due to quantization), especially at the higher frequencies where the
signals of musical sounds have little energy. The quantization noise floor makes
it hard to “see” the actual data. Normalization will remove the colouration that
the room introduces at the same time it removes the vowel spectrum. This will
probably have to be approximated by hand afterwards for a realistic ensemble
sound. The source of these problems lies in the small amount data we have
available. Each 6 second sample produces very little data for each harmonic
(typically 1500-3000 amplitude values). This will only allow us to compute one
or two FFT windows, and that will make the output unreliable. More data is
needed.

Chapter 3

Discussion

With reference to Dolson’s result that amplitude modulations are sufficient for
perception of ensemble, we now suggest that this assertion can be further qual-
ified as follows: Pure amplitude modulations alone cannot simulate all aspects
of the ensemble sound. The reason is that the notion of a signal amplitude is
tied to a time window of measurement that is too long to capture the spectrum-
smearing properties of an ensemble at high frequencies.

There remains to propose a model for the partial modulations in the complex-
valued case. A typical 6 second recording of an ensemble only gives us about
1500-3000 amplitude envelope data points per partial. A stringent analysis
would require a lot more data. This does not necessarily have to be the same
sustained vowel, multiple independent recordings of a choir singing the same
sustained vowel at the same pitch would do. A loop on the other hand, would
not be sufficient.

The recordings of unison choirs were made using binaural microphones. In
these experiments, the left and right channels were added to obtain a mono file
prior to analysis. This in itself makes the sound a little bit different.

The resampling scheme which we employed incurs a lot of computation, but

was chosen because we wished for a convenient representation of the modulation
of each partial in an ensemble sound. Instead of resampling the input signal to
align it to fo, one might use a conventional FFT and try to find a model for
how the spectral lines are blurred.
The inherent delay in computing the FFT might also be problematic, especially
if a sound having a low fy is to be processed. The theory could be extended
to splitting the FFT into parts. Allowing lower frequencies to have a longer
processing delay than higher frequencies. This is left for others to try.

16

Chapter 4

Summary

The three methods described here have different advantages and drawbacks.

The filter bank is easy to understand and implement, it has neglible inherent
delays in the processing, and does impart a certain ensemble sensation; but the
quality is a bit synthetic.

The real-valued FFT method yields and uses information on each partial and
therefore has greater potential for precision than the third-octave filter bank.
However, fo must be determined separately.

The complex-valued FFT method is the general form of the real-valued FFT
method. It gives complete control in the sense that the original signal can be
reconstructed from the spectral representation. However, it is more difficult to
describe the complex-valued amplitude envelopes with a model. The complex-
valued FFT approach will probably need slightly more computation due to the
complex-valued amplitude envelopes. The actual FFT needs less computation
in the complex-valued case, as we do not need to calculate the magnitude of the
FFT data points.

A full model using the complex-valued FFT method would have to include
fo tracking and adaptive resampling. Nevertheless, this is the most promis-
ing of the three methods for a high-fidelty simulation. It is definitely worth
investigating further.

e Filter bank

+ Easy to understand and implement.
+ Gives a sense of ensemble.
+ neglible inherent processing delay

— The original solo voice remains easy to identify.
e Real-valued FFT

+ Better sense of ensemble than the filter bank.
— fo must be known.

— inherent processing delay (one FFT window must be known)
¢ Complex-valued FFT

+ Gives the best sense of ensemble.

17

CHAPTER 4. SUMMARY

+ nearly lossless spectral representation
— Hard to implement.
— fo must be known.

— inherent processing delay (one FFT window must be known)
e Modeling the data

+ Does not need sampled modulations from a choir.

— It is difficult to make a good model. (not enough reference data)

18

Appendix A

Sound data

A.1 Ensemble material

The ensemble material was recorded by Sten Ternstréom on 7.11.1984. It consists
of Teknologkdren’s male section singing sustained Swedish vowels at different
pitches. On parts of the tape the female section of the choir can be heard
rehearsing in a nearby room. The room used is a normal lecture room at KTH?,
and has moderate reverbation.
Equipment used for recording;:

e Sennheiser MKE2002 artificial head placed mid choir.
e Revox B77 tape machine (19cm/s)

The material was sampled from reel tape by Daniel Kahlin on 20.5.1998 using
the following equipment:

e Revox A77 tape machine (19cm/s)
e Loughbourough Sound Images LSI-C32 sound card (32kHz stereo)

The sampled data was then split? into sound files according to table A.1 on
page 20.

A.2 Solo material

The solo material was recorded by Sten Ternstrém (date unknown). It con-
sists of two male singers and one female singer, one at a time, singing sus-
tained Swedish vowels at different pitches. The material was transferred digi-
tally (32kHz mono) by Daniel Kahlin from DAT, fall 1998. The sampled data
was then split into sound files according to table A.2 on page 20.

I The Royal Institute of Technology, Stockholm, Sweden
2The ambient noise was left on purpose, so you know how much there is.

19

APPENDIX A. SOUND DATA

Name Length fo | Comment

forl.wav 1430572 | 96 Hz | for

faarl.wav 1554476 | 126 Hz | far

faar2.wav 1342508 | 126 Hz | far

faangl.wav 1316908 | 157 Hz | fang

farl.wav 1465388 | 186 Hz | far

foerl.wav 1317932 | 95 Hz | for (click on mastertape)
fyrl.wav 1488940 | 128 Hz | fyr

forigenl.wav | 1379372 | 159 Hz | for
fyrigenl.wav | 1325100 | 191 Hz | fyr
fyrigen2.wav | 1412140 | 191 Hz | fyr
fatl.wav 1498156 | 114 Hz | fat
flackl.wav 1298476 | 150 Hz | flack
fartval.wav 1141804 | 189 Hz | far
fartva2.wav 1347628 | 189 Hz | far
fannl.wav 1397804 | 226 Hz | fann

full.wav 1268780 | 114 Hz | ful
fell.wav 1177644 | 154 Hz | fel
fettl.wav 1321004 | 189 Hz | fett
fenl.wav 1256492 | 228 Hz | fen

omforl.wav 1238060 | 97 Hz | for

omforigl.wav | 1549356 | 164 Hz | for

omflackl.wav | 1161260 | 153 Hz | flack

omfell.wav 1269804 | 155 Hz | fel

info.wav 1640492 Sten Ternstrém speaking

Table A.1: These are the original ensemble sound files.

Name Length fo | Comment
sundbl.wav | 404524 | 150.8 Hz | Johan Sundberg ‘1"
sundb2.wav | 264236 | 149.8 Hz | Johan Sundberg “0”
sundb3.wav | 391212 | 146.2 Hz | Johan Sundberg “a”
sundb4.wav | 661548 | 147.4 Hz | Johan Sundberg “e”
sundbb.wav | 563244 | 152.1 Hz | Johan Sundberg “1”
ternsl.wav | 629804 | 216.8 Hz | Sten Ternstrém “a”
terns2.wav | 657452 | 218.4 Hz | Sten Ternstrém 1"
terns3.wav | 615468 | 216.6 Hz | Sten Ternstrém “o”
ternsd.wav | 676908 | 216.1 Hz | Sten Ternstrém “e”
rydinl.wav | 541740 608 Hz | Cecilia Rydinger “a”
rydin2.wav | 440364 609 Hz | Cecilia Rydinger “a”

Table A.2: These are the solo sound files.

Appendix B

Matlab source code

B.1 pvtest.m

function pvtest(namel, f1, name2, f2, nameout, fout);
% PVTEST - cross apply spectrums

h

% usage: pvtest(namel, f1, name2, f2, nameout, fout);
% namel - name of ensemble sound (wav file)

% f1 - fundamental of ensemble sound

% name2 - name of solo sound (wav file)

% £2 - fundamental of solo sound

% nameout - name of output sound

% fout - fundamental of output sound

%
% $Id: pvtest.m,v 1.13 1999/03/01 16:56:05 daniel Exp $
% Copyright (c) 1998, 1999 Daniel Kahlin <daniel@kahlin.net>

% if this is we apply the _mean_ spectrum of ’name2’
% to ’namel’
medel=0;

% analyze data
data = specan(namel,f1);

% analyze data
data2 = specan(name2,f2);

% normalize data

for I=1:size(data,1),
nm=max (abs(data(I,:)));
data(I,:) = (data(I,:) / nm) ;
data(I,1)=0;

end

21

APPENDIX B. MATLAB SOURCE CODE 22

if medel
% calculate the spectrum
spec2 = sum(abs(data2),2);

% apply spectrum to datastream
dataut=zeros(size(data));
for I=1:length(data),
dataut(:,I) = data(:,I) .* spec2;
end
else
% apply spectrum to datastream
utlen=min([length(data) length(data2)]);
dataut=zeros([size(data,1) utlenl]);
for I=1:utlen,
dataut(:,I) = data(:,I) .* data2(:,I);
end
end

% resynth data
respect (dataut,fout,nameout)

h
% EOF
h

B.2 specan.m

function data = specan(name,f0,Fs);
% SPECtral ANalysis of sample

h

% usage: data = specan(name,f0,Fs);

% name - name of wav file to be analyzed (May be a vector)
% f0 - the fundamental of the sound

% Fs - optional samplerate

h

% $Id: specan.m,v 1.6 1999/03/01 16:56:06 daniel Exp $
% Copyright (c) 1998, 1999 Daniel Kahlin <daniel@kahlin.net>
if (nargin<2)
fprintf (’specan: too few arguments\n’);
return;
end

if (nargin<3)
Fs=32000;
end

% set parameters
inname=name;

APPENDIX B. MATLAB SOURCE CODE 23

freq0=£0;

% This is the FFTLEN to contain 2 periods of freqO
FFTLEN=512;

% set this if you want exact resampling (should always be!)
% If we have a weird fO this might take a while
exact=0;

% set this if you want the output normalized to |Y|=1
normalize=0;

)

% Read sound

h

if inname
[Y,Fs,bits]=wavread(inname) ;
[nsmpls nchnls]=size(Y);
fprintf(’loaded %s Fs=Vd Hz res=Jd bits channels=%d\n’, inn

ame, Fs, bits, nchnls);
Y=monofy(Y);

else
Y=monofy(name) ;
bits=16;

end

h

% resample to perfectly fit into fft

)

fprintf (’resampling...’);

if exact
% cutdown to a perfect multiple of samplerate
per=Fs/freq0;
numb=floor (length(Y) /per);
nbefore=floor (numb*per) ;
Y=Y(1:nbefore);
nafter=FFTLEN*numb;
Y=resample(Y,nafter,nbefore);

else
% approximate sample ratio
oldfftlen=round(Fs/freq0) ;
nbefore=length(Y);
Y=resample(Y,FFTLEN,o0ldfftlen);
nafter=length(Y);

end

Fsafter=(nafter/nbefore) *Fs;

nshould=round (FFTLEN*freqO*nbefore/Fs) ;

fprintf (’\rresampled %d samples into %d (exact=%d)\n’,nbefore,na
fter,nshould) ;

APPENDIX B. MATLAB SOURCE CODE 24

%

% Process

%

FRACTION=4;

STEP=FFTLEN/FRACTION;
HLEN=FFTLEN/2;

FRAMES=floor ((nafter-FFTLEN)/STEP) ;
data=zeros (HLEN+1,FRAMES) ;

fprintf (’ computing %d frames of data...’,FRAMES);
P0OS=1;
for I = 1:FRAMES,
buffer = Y(POS:(POS+FFTLEN-1)) .* sqrt(hamming (FFTLEN));
fftout=fft(buffer, FFTLEN);
data(:,I)=fftout(1:HLEN+1);
POS=POS+STEP;
end
fprintf(°0k.\n’);

%
% scale data
%
if normalize
for I=1:HLEN+1,
nm=max (abs (data(I,:)));
data(I,:) = (data(I,:) / nm) ;
end
end

)
% EQF
YA

B.3 respect.m

function Y=respect(data,fO,name,Fs);
% REsynthesis of SPECTral data
%

% usage: respect(data,f0,name,Fs);

% data - the spectral data

% f0 - the fundamental of the sound

% name - name of output wav file (if omitted the array wil
1 be returned)

% Fs - optional samplerate

)
% $Id: respect.m,v 1.8 1999/03/01 16:56:05 daniel Exp $

APPENDIX B. MATLAB SOURCE CODE

% Copyright (c) 1998, 1999 Daniel Kahlin <daniel@kahlin.net>
if (nargin<2)
fprintf (’respect: too few arguments\n’);
return;
end
if (nargin<3)
name=[];
end
if (nargin<4)
Fs=32000;
end

% set parameters
outname=name;
freq0=£0;
bits=16;

% This is the FFTLEN to contain 2 periods of freqO
FFTLEN=(size(data,1)-1)*2;

% resample to perfectly fit into fft
oldfftlen=round(Fs/freq0);

FRACTION=4;
STEP=FFTLEN/FRACTION;
HLEN=FFTLEN/2;
FRAMES=length(data) ;

)
% Resynthetisize to verify data

h

fprintf (’resynthetisizing %d frames of data...’,FRAMES);
Ynew=zeros (FRAMES*STEP+FFTLEN, 1) ;
P0OS=1;

for I = 1:FRAMES,
fftin=[data(1:HLEN+1,I); conj(flipud(data(2:HLEN,I)))];
buffer=real (ifft(fftin, FFTLEN)) .* sqrt (hamming (FFTLEN));
Ynew (P0OS:POS+FFTLEN-1)=Ynew (P0S:POS+FFTLEN-1)+buffer;
POS=P0OS+STEP;

end

fprintf (’0k.\n’);

Ynew=resample (Ynew,o0ldfftlen,FFTLEN) ;

% normalize
Ynew = rescale(Ynew,0.9);

if outname

25

APPENDIX B. MATLAB SOURCE CODE

% Write sound
wavwrite(Ynew,Fs,bits,outname)
fprintf (Pwrote %s len=)d samples Fs=/d Hz
utname, length(Ynew), Fs, bits);
else
% return value
Y=Ynew;
end

26

res=%d bits\n’, o

Appendix C

Acknowledgements

Thank you to Sten Ternstom who was my supervisor on this project, and
was very helpful in general.

We are grateful to Johan Liljencrants for in-depth discussions.

Thank you to Theresa Sandin who, with love, motivated me to finish this
report.

27

Bibliography

1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

Mark Dolson: A Tracking Phase Vocoder and Its Use in the Analysis of
Ensemble Sounds, pp 83-121, Ph. D. Thesis, Caltech, 1983

Takeshi Adachi: US Patent 3,866,505, Ensemble effect imparting device us-
ing a bucket brigade device for an electric musical instrument, Hamamatsu,
Japan, 1975

Cotton, Jr. et al.: US Patent 4,384,505, Chorus Generator System, 1983

Sten Ternstrom: Perceptual Fvaluations of Voice Scatter in Unison Choir
Sounds, Journal of Voice Vol. 7 No. 2. pp. 129-135, 1993

Sten Ternstrom and Anders Friberg: Analysis and simulation of small
variations in the fundamental frequency of sustained vowels, KTH
Speech Transmission Laboratory Quarterly Progress and Status Report
STL-QPSR 3-1989, pp. 1-14, 1989

David A. Jaffe: Spectrum Analysis Tutorial, Part 1: The Discrete Fourier
Transform, Computer Music Journal, Vol. 11, No. 2, Summer 1987

David A. Jaffe: Spectrum Analysis Tutorial, Part 2: The Discrete Fourier
Transform, Computer Music Journal, Vol. 11, No. 3, Fall 1987

Daniel Kahlin and Sten Ternstrom: The Chorus Effect Revisited: FEz-
periments in Frequency-Domain Analysis and Simulation of Ensem-
ble Sounds, Proc of Euromicro’99, IEEE Computer Society, PR000321,
ISBN 0-7695-0321-7; 2: pp. 75-80, 1999

28

